Automorphism Groups of Normal Cr 3 - Manifoldsflorin

نویسنده

  • FLORIN ALEXANDRU BELGUN
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automorphism Groups of Normal Cr 3-manifolds

We classify the normal CR structures on S and their automorphism groups. Together with [2], this closes the classification of normal CR structures on contact 3-manifolds. We give a criterion to compare 2 normal CR structures, and we show that the underlying contact structure is, up to diffeomorphism, unique.

متن کامل

Cr Manifolds with Noncompact Connected Automorphism Groups

The main result of this paper is that the identity component of the automorphism group of a compact, connected, strictly pseudoconvex CR manifold is compact unless the manifold is CR equivalent to the standard sphere. In dimensions greater than 3, it has been pointed out by D. Burns that this result follows from known results on biholomorphism groups of complex manifolds with boundary and the f...

متن کامل

Automorphism Groups of Parabolic Geometries

We show that elementary algebraic techniques lead to surprising results on automorphism groups of Cartan geometries and especially parabolic geometries. The example of three–dimensional CR structures is discussed in detail.

متن کامل

NORMAL 6-VALENT CLAYEY GRAPHS OF ABELIAN GROUPS

We call a Clayey graph Γ = Cay(G, S) normal for G, if the right regular representation R(G) of G is normal in the full automorphism group of Aunt(Γ). in this paper, we give a classification of all non-normal Clayey graphs of finite abelian group with valency 6. 

متن کامل

NORMAL 6-VALENT CAYLEY GRAPHS OF ABELIAN GROUPS

Abstract : We call a Cayley graph Γ = Cay (G, S) normal for G, if the right regular representation R(G) of G is normal in the full automorphism group of Aut(Γ). In this paper, a classification of all non-normal Cayley graphs of finite abelian group with valency 6 was presented.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007